
Causal Learning in Economics
Part II: SL+ UL

Mingli Chen

University of Warwick

May 2, 2025



Previous examples were all pretty much supervised learning
▶ have data on a set of features X1, ...,Xp and an outcome Y

▶ goal to build a model for Y |X1, ...,Xp that captures important
features but doesn’t overfit

▶ model assessment pretty natural

Unsupervised learning:
▶ have data on a set of features X1, ...,Xp

▶ want to extract interesting low-dimensional information from
data
▶ E.g. is there a useful way to visualize/present complicated or

high-dimensional data? (EDA/fancy descriptive statistics)
▶ E.g. is there a useful dimension reduction of X that can be

taken before applying other methods?
▶ E.g. are there sets of similar variables or observations?

Challenge of unsupervised learning is that it’s very subjective (in
many situations) and hard to assess



Some unsupervised techniques pretty familiar to economists:
▶ density estimation
▶ factor models/PCA

Other approaches may be less familiar:
▶ clustering
▶ topic models
▶ graphical models



Factor Models and PCA

Xt = ΛFt + ϵt

where Xt is the observed data, Λ is the factor loading matrix, Ft
are latent factors, and ϵt is the error term.
▶ Xt : N × 1 vector
▶ Ft : K × 1 vector
▶ Λ: N × K matrix
▶ et : N × 1 vector

PCA finds principal components by maximizing variance:

PCk = arg max
∥v∥=1

Var(Xv), subject to orthogonality constraints



PCA and Factor Models (Comments)

Stock and Watson (2002) “Forecasting Using Principal Components
From a Large Number of Predictors” JASA provides conditions
under which PCA is consistent for factors from factor model (in
appropriate sense) in large N and T setting

PCA (and factor analysis) often used as a pre-processing step to do
dimension reduction before applying other supervised learning
technique for forecasting (e.g. Stock and Watson’s motivation)
▶ If you have target in mind, why not do factor extraction jointly

with learning?
▶ Partial least squares, Supervised Principal Components, ... try

to do this
▶ PCA inherently a high-dimensional operation, might want

further regularization, e.g. sparse PCA



PCA in AJR Institutions IV Example

▶ Equation of interest:

log(GDP per capitali ) = α(Protection from Expropriationi )+x ′iβ+εi

▶ Want to control for persistent variables related to institutions
and GDP development.

▶ Leading candidate: Geography (Geographic Determinism).
▶ Let’s look at principal components in the geography variables



Scree Plot for Geography PCs



2SLS Estimates Using PCs as Controls

▶ Baseline (just latitude):
▶ First-stage: −0.5487 (0.1659)
▶ α̂ : 0.9252 (0.2095)

▶ PC 1:
▶ First-stage: −0.3542 (0.1732)
▶ α̂ : 1.2151 (0.4759)

▶ PC 1-5:
▶ First-stage: −0.2931 (0.1656)
▶ α̂ : 1.1119 (0.5160)

▶ PC 1-20:
▶ First-stage: −0.0658 (0.2435)
▶ α̂ : 2.1202 (6.4129)

▶ Question: How many PCs are optimal?



Clustering

▶ Groups similar objects into clusters based on features, without
predefined labels.

▶ K-Means Clustering: Minimizes within-cluster variance:

min
C1,...,CK

K∑
k=1

∑
i∈Ck

∥xi − µk∥2

where Ck are clusters, µk is the centroid of cluster k , and xi
are data points.

▶ Hierarchical Clustering: Builds a tree (dendrogram) by
merging or splitting clusters based on a distance metric (e.g.,
Euclidean).



Topic Modeling

▶ Topic modeling is a form of clustering for discrete data, widely
used in text analysis.

▶ Core building block: A multimodal mixture model.
▶ Model Equation:

xi ∼ MN(ωi1θ1 + ωi2θ2 + . . .+ ωiKθK ,mi )

▶ xi : Data for document i (e.g., all tokens in document i).
▶ K : Number of potential topics.
▶ θk : Probability of word j in topic k [θk = {θk1, . . . , θkJ}′].
▶ ωik : Probability that document i belongs to topic k .
▶ mi =

∑
j xij : Total words in document i .



Interpretation

▶ The word vector xi in each document follows a multinomial
distribution with probabilities as a mixture of topics.

▶ θk vectors represent topic phrase probabilities, with∑J
j=1 θkj = 1.
▶ Example: A banking topic might have high probabilities for

"money", "interest rate", "loan", etc.

▶ Document weights ωik are probabilities, with
∑K

k=1 ωik = 1.
▶ Example: A paper on the economics of bank runs would have

a high probability for the banking topic.

▶ Unlike traditional clustering, each word comes from a topic,
and each document is a mixture of topics.



Casual Panel
FE, IFE, MC

{
Yit(0)
Yit(1) = Yit(0) + τit

▶ FE
Yit(0) = Xitβ + Ziθt + δt + αi + εit

▶ IFE
Yit(0) = Xitβ + Ziθt + λtµi + εit

▶ MC assumes that the non-treated potential outcome matrix
Y(0) can be approximated by L (we omit covariates and
additive fixed effects for simplicity):

Y(0) = L + ε,E [ε|L] = 0,



Comparison

▶ Factor model (interactive fixed effects approach)

▶ Nuclear norm penalisation

Recall that for a matrix A ∈ Rm×k its nuclear norm is given by

∥A∥∗ =

min{m,k}∑
i=1

σi ,

where σ1, . . . , σmin{m,k} are the singular values of A.



MC, nuclear norm penalisation

▶ As with IFE, L can be expressed as the product of two
k-dimension matrices: L = ΛF

▶ Different from IFE, however, instead of estimating factors F
and factor loadings Λ separately, the MC estimator seek to
directly estimate L by solving the following minimization
problem:

L̂ = argmin
L

 ∑
(i ,t)∈O

(Yit − Lit)
2

|O|
+ θ∥L∥∗

 ,

in which O = (i , t), Dit = 0 and |O| is the number of
elements in O. ∥L∥ is the chosen matrix norm of ∥L∥ and θ is
a tunning parameter.

▶ It’s a "matrix version" of LASSO where the nuclear norm (ℓ1
norm on singular values) is the regularization.


