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Roadmap
(Prediction & Inference; Causal/Counterfactual Prediction & Inference)

▶ Supervised Learning
▶ (post)-Lasso (Ridge, Elastic Net), (prune/boosted)Tree,

Random Forest, Deep Neural Nets, etc
▶ Ensemble learning/Aggregation and Cross-Breading of the ML

methods.
▶ Inference, partial linear model (RCT) & IV regression with

selection/regularization
▶ double machine learning, double partialling out (FWL),

Neyman-orthogonalization
▶ sample splitting, cross-fitting

▶ extension, triple machine learning (heterogeneous treatment
effect)

▶ empirical applications: Mincer equations, Barro-Lee, AJR etc
▶ Quantile regression: ℓ1-QR

▶ Unsupervised Learning
▶ Kernel density
▶ PCA, factor model
▶ Clustering, Kmeans
▶ Topic modelling; Text Analysis



Roadmap (cont.)

▶ Supervised Learning + Unsupervised Learning
▶ Causal Panel: Synthetic Control, Factor Model, and Nuclear

Norm penalisation
▶ ℓ1-norm regularization on singular value of a matrix

▶ High Dimensional Panel Quantile Models
▶ many interesting work to be done
▶ more difficult, challenges due to non-differentiability and

individual and time effects

▶ (Deep) Reinforcement Learning & AI agents



Part I: Supervised Learning

▶ Machine Learning (ML) and Causal Inference
▶ prediction VS counterfactual prediction

▶ Causal ML framework, e.g. ML with nuisance
functions/parameters/models
▶ Neyman Orthogonalization
▶ Double Machine Learning
▶ Debiased ML

▶ Causal Inference in High-Dimensional Approximately Sparse
Structural Linear Models

▶ Graphical model

"Lasso is the new OLS"
R-package "hdm"
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Model 1: High Dimensional Approximately Sparse Model

Y = α0D + f0(X ) + U

If nuisance function f0 is estimable at O(n−1/2) rate then so is α0

Problem: accurate nuisance estimates often unachievable when f0 is
non-parametric or linear and high-dimensional



Model 2: Linear Endogenous Model

yi︸︷︷︸
outcome

= di︸︷︷︸
treatment

effect︷︸︸︷
α0 +

p∑
j=1

xijβ0j︸ ︷︷ ︸
controls

+ ui︸︷︷︸
noise

,

E[ui | xi , zi︸︷︷︸
exogenous vars

] = 0



Example 1: Estimating Price Elasticity of Demand
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Example 1: Estimating Price Elasticity of Demand (Cont.)

Comments:

▶ Endogeneity; unobserved confounders; missing data

▶ i). Unobserved factors

▶ although, adding interaction terms can be viewed as an
approximation

▶ ii). Instrumental Variables (IVs), Z

▶ many IVs => selection on Z



Example 2: Wage

▶ Scalar outcome variable Y , wage of a worker
▶ Vector of regressor variables or features CX :

CX = (CX1, ....,CXp)
′

which contains worker’s characteristics, e.g. education,
experience, gender. We assume that a constant of 1 is
included as a component.

▶ When needed, we may partition CX into

CX = (D,X ′)′,

where D is the target regressor or treatment (e.g. gender
indicator), whose impact is of interest, and X are other
regressors that usually serve as controls.



Two Main Questions:

▶ The purpose of regression analysis is to characterise the
statistical relation of Y with X :

1. The Prediction Question: How can we use CX to predict Y
well?

2. The Inference Question: How does the predicted value of Y
change if we change the component D of CX , holding X (the
other components of X ) fixed?

▶ We will address the prediction question first and the inference
question second.



Two Main Questions in the Wage Example

▶ The Prediction Question: how to use job-relevant
characteristics, such as education and experience, to best
predict wages?

▶ The Inference Question: what is the difference in predicted
wages between men and women with the same job-relevant
characteristics?



Preview of a Wage Case Study

▶ Case study using data from the U.S. Current Population
Survey (CPS) in 2012 for single (never married) workers.

▶ We shall
▶ Construct a prediction rule for hourly wage, which depends

linearly on the job-relevant characteristics.

▶ Assess the quality of the prediction rule using out-of-sample
prediction performance.

▶ Find that on average women are paid about 2 dollars less per
hour than men with the same experience and other recorded
characteristics.

▶ This estimate is called the gender wage gap in labor
economics, and measures (in part) gender pay discrimination.



Quality of Prediction: Intuition

▶ The best linear prediction rule is α0D + β′0X . Does α̂D + β̂′X
approximate α0D + β′0X?

▶ We are trying to estimate p parameters α0, β01, ..., β0,p−1,
without imposing any assumptions on these parameters.

▶ Intuitively, to estimate each parameter well, we we need many
observations per parameter.

▶ This means that n/p must be large, or, equivalently p/n must
be small.



Quality of Prediction: Theory

Denote θ̂ = (α̂, β̂), θ0 = (α0, β0).

Theorem
Under regularity conditions√

EX (θ
′
0CX − θ̂′CX )2 ≤ const ·

√
Eu2

√
p

n
,

where EX is expectation with respect to X and the inequality holds
w.p.a. 1 as n → ∞.

If n is large and p is much smaller than n, for nearly all realizations
of data, the sample linear regression can come close to the
population linear regression.



Summary 1

▶ We define linear regression in population and in sample
thought the best linear prediction problems solved in
population and in the sample

▶ The sample linear regression (best linear predictor)
approximates the population linear regression (best linear
predictor) when the ratio p/n is small

▶ We will discuss the assessment of prediction performance in
practice next.



Case Study: Predicting Wages

Our goals are

1. Predict wages using various characteristics of workers.

2. Assess the predictive performance using adjusted MSE and
R2, and out-of-sample MSE and R2.



Data

▶ Data is from the March Supplement of the U.S. Current
Population Survey, year 2012.

▶ Focus on the single (never married) workers with education
levels equal to high-school, some college, or college graduates.

▶ The sample is of size n ≈ 4, 000

▶ The outcome Y is hourly wage, and CX are various
characteristics of workers.



Descriptive Statistics



Predictive Models

▶ Basic Model: CX consists of the female indicator (D) and
other controls X , which contain a constant, experience,
experience squared, experience cubed, education indicators,
and regional indicators. CX includes p = 10 regressors.

▶ Flexible Model: CX consists of D as well as X , which
contains all of the components of X in the basic model plus
their two-way interactions. An example of a regressor created
through a two-way interaction is experience times the indicator
of having a college degree; another example is the indicator of
having a high-school diploma times the indicator of working in
the ”north-east” region. CX includes p = 33 regressors.



Performance of Predictive Models

▶ Since p/n is small, the sample linear regression should
approximate the population linear regression well.

▶ We expect the sample R2 to agree with adjusted R2 and be a
good measure of out-of-sample performance.



Assessing Predictive Performance



▶ Using a real example, we have assessed predictive performance
of two linear prediction rules.

▶ Next we will proceed to discuss the Inference Problem.



The Inference Question: Introduction

▶ We partition the vector of regressors CX into two components:

CX = (D,X ′)′.

where D represents the “target” regressors of interest, and W
represents the other regressors, sometimes called the controls.

▶ In the wage example, D is the female indicator and W include
experience, educational, and geographic characteristics.

▶ Accordingly, write

Y = α0D + β′X︸ ︷︷ ︸
Predicted value

+ U︸︷︷︸
error

▶ The Inference Question: How does the predicted value of Y
change if we increase D by a unit, holding X fixed?



The Inference Question: Introduction (Cont.)

▶ In the wage example: what is the difference in predicted wages
between men and women with the same job-relevant
characteristics?

▶ The answer is the population regression coefficient

α0

corresponding to the target regressor D.

▶ In the wage example, D is the female indicator and α0 is the
Gender Wage Gap.



Understanding α0 via ”Partialling-Out”
▶ ”Partialling-out” is an important tool that provides conceptual

understanding of the regression coefficient α0.

▶ In the population, define the partialling-out operation as a
procedure that takes a random variable V and creates a
"residual" Ṽ by subtracting the part of V that is linearly
predicted by X :

Ṽ = V − γ′VXX , γVX = argmin︸ ︷︷ ︸
γ

E(V − γ′X)2

▶ When V is a vector, we apply the operation to each
component.

▶ It can be shown that the partialling-out operation is linear:

Y = V + U ⇒ Ỹ = Ṽ + Ũ.



▶ We apply the partialling-out to both sides of our regression
equation Y = α0D + β′X + U to get:

Ỹ = α0D̃ + β′X̃ + Ũ,

which simplifies to the decomposition:

Ỹ = α0D̃ + U, EUD̃ = 0.

▶ This follows because partialling-out takes out β′X , since
X̃ = 0, and leaves U untouched, Ũ = U, since U is linearly
unpredictable by CX and therefore by X .

▶ Moreover, EUD̃ = 0 since D̃ is a linear function of CX .



Frisch-Waugh-Lovell Theorem

The decomposition implies that EUD̃ = 0 are the Normal
Equations for the population regression of Ỹ on D̃. Thus:

Theorem (FWL)
The population linear regression coefficient α0 can be recovered
from the population linear regression of Ỹ on D̃:

α0 = argmin
b1

E(Ỹ − b1D̃)2 = (ED̃2)−1ED̃Ỹ ,

where α0 is uniquely defined if D cannot perfectly predicted by X ,
i.e. ED̃2 > 0.

This is a remarkable fact. It asserts that α0 can be interpreted as a
(univariate) regression coefficient of residualized Y on
residualized D, where the residuals are defined by partialling-out
the linear effect of X from Y and D.



How to do Estimation?

▶ In the sample, we will mimic the partialling-out in the
population.

▶ When p/n is small, we can do this by sample linear regression.

▶ When p/n is not small, using sample linear regression for
partialling-out is not a good idea. Can do penalized regression
and dimension reduction instead. More on this later.



Inference Result: Theory

Theorem (Inference)
If p/n is small, then the estimation error in Ďi and Y̌i has no first
order effect on α̂, and

α̂ ∼ N(α0,V /n)

where
V = (ED̃2)−1E(D̃U2)(ED̃2)−1



Comments:

▶ We interpreted α0 as the regression coefficient in the bivariate
regression of the response variable on the target variable, after
we have removed the linear effect of the other variables.

▶ This result is useful for interpretation and understanding of the
regression coefficient.

▶ It will also be useful for setting up inference in modern
high-dimensional settings.

▶ Next, we will carry out a case study for the Wage Example.



Case Study: Inference about Gender Wage Gap

What is the difference in predicted wages between men and women
with the same job-relevant characteristics?



CPS 2012 Data: Summary



Specifications

▶ We estimate the linear regression model:

Y = α0D + β′X + U

▶ D is the indicator of being a female (1 if female and 0
otherwise). X ’s are controls.

▶ Basic model: X ’s consist of education and regional indicators,
experience, experience squared, and experience cubed.

▶ Flexible model: X ’s consist of controls in the basic model plus
all of their two-way interactions.



Results



Comparison of Estimates Based on Full Regression and
Partialling-Out



We now turn to the ultra/high dimensional setting:

▶ Double Machine Learning

▶ Triple Machine Learning

▶ Neyman Orthogonalization for

▶ policy learning;

▶ graph learning (graphical model), e.g. one of Belloni, Chen,
Chernozhukov 2016’s contributions is providing inference for
graphical models



LASSO

▶ Least Absolute Shrinkage and Selection Operator

▶ Add an ℓ1 penalty to the regression objective. Used in
high-dimensional nonparametric regression to select relevant
basis functions or features.

β̂ = argmin
β

1
n

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |


where yi is the response, λ is the tuning parameter, and βj are
coefficients.



Regression Trees

▶ Partition the feature space into regions based on feature
thresholds, estimating a constant or simple function in each
region. Commonly used in regression and classification via
recursive binary splitting.

▶ For regression trees, the predicted value in a region Rm is:

f̂ (x) =
M∑

m=1

β̂mI(x ∈ Rm)

where I(x ∈ Rm) is the indicator for region Rm, and β̂m is the
predicted value.



Regression Trees

▶ The predicted values β = (β1, ..., βM) are obtained by
minimizing the sample MSE:

β = arg min
b1,...,bM

n∑
i=1

(
yi −

M∑
m=1

bmI(xi ∈ Rm)

)2

so that
βm = average of yi where xi ∈ Rm

▶ The regions R1, ...,RM are called nodes, and each node Rm

has a predicted value β̂m associated with it.



Figure that illustrates Idea:

A nice feature of the regression trees is that you get to draw cool pictures.
Consider the Wage Example, where Y is hourly wage, and Z include
experience, geographic, and educational characteristics.

college < 0.5

exper < 14 exper < 9.5

12 14 17 24

yes no

In this tree the predicted hourly wage for college graduates (college =1)
with more than 9.5 years of experience is 24 dollars, and otherwise is 17;
the predicted wage for non-college graduates with more than 14 years of
experience is 14 and otherwise is 12.



Figure 1:“To prune a tree”



Neural Networks

▶ Use parameterized nonlinear transformations of linear
combinations of the raw regressors as constructed
regressors (called neurons), and produce the predicted value as
a linear function of these regressors.

▶ The method and the name "neural networks" were loosely
inspired by the mode of operation of the human brain, and
developed by scientists working on the Artificial Intelligence.
Difference between DRL and DL.

▶ They can be represented by cool graphs and diagrams that we
will discuss shortly, so please stay tuned.

▶ Here we focus on single layer neural network to discuss the
idea.



Single Layer Neural Networks
▶ The estimated prediction rule will take the form:

ĝ(X ) =
M∑

m=1

β̂mZm(α̂m)

where the Zm(α̂m)’s are the constructed regressors called
neurons

▶ The M neurons are generated by

Zm(αm) = σ(αT
mX ), m = 1, ...,M,

where αm’s are neuron-specific vectors of parameters called
weights, and σ is the activation function, for example:
▶ the sigmoid function:

σ(X ) =
1

1 + e−X

▶ the rectified linear unit function (ReLU):

σ(X ) = max(0,X )



X1

X2

X3

X4

Xp

...

Z1

Z2

Z3

ZM

...

Y1

Y2

YK

...

input
layer

hidden layer
σ(αTX) output

layer
T (βTZ)



X1

X2

X3

X4

Xp

ZM

Z3

Z2

Z1

α1,1α1,1

α1,2α1,2

α1,3α1,3

α1,4α1,4

α1,pα1,p

...

...

= σ
(
α1,1X1 + α1,2X2 + . . .+ α1,pXp + b

(0)
1

)
= σ

(
p∑

i=1

α1,iXi + b
(0)
1

)


Z1

Z2

...
ZM

 = σ




α1,1 α1,2 . . . α1,p

α2,1 α2,2 . . . α2,p

...
...

. . .
...

αM,1 αM,2 . . . αM,p



X1

X2

...
Xp

+


b
(0)
1

b
(0)
2
...

b
(0)
M




Z = σ
(
α(0)X+ b(0)

)



Estimation

The estimators α̂m and β̂m, for m = 1, ...,M, are obtained as the
solution to the penalised the nonlinear least squares problem:

min
{αm},{βm}

∑
i

(
Yi −

M∑
m=1

βTmZim(αm)

)2

+λ

∑
m

∑
j

|αmj |+
∑
m

|βm|


In this formula we use Lasso type penalty, but we can also use
Ridge and other type of penalties.



Double ML for Treatment Effect
[Belloni, Chernozhukov, Hansen 2014] [Chernozhukov et al 2017a,b]

1. Lasso/Regress Y ∼ X , learn q(X ) = Ê [Y |X ]

2. Lasso/Regress D ∼ X , learn p(X ) = Ê [D|X ] (mean treatment
policy)

3. Linear Regression on residuals: Y − Ê [Y |X ] ∼ D − Ê [D|X ]

min
α

1
n

∑
i

(Yi − q(Xi )− α · (Di − p(Xi )))
2

coefficients in final regression is treatment effect α
▶ Neyman orthogonal estimator of α0 robust to first-order errors

in nuisance estimates; yields
√
n-consistent and asymptotically

normal estimate of α0

▶ Nuisance estimates can be fitted by arbitrary ML methods,
subject to achieving RMSE consistency at the slow rate of
O(n−1/4)



Other Examples
Effect of Institutions on the Wealth of Nations

▶ Acemoglu, Johnson, Robinson (2001)
▶ Impact of institutions on wealth

yi︸︷︷︸
log gdp per capita

= di︸︷︷︸
quality of institutions

effect︷︸︸︷
α0 +

p∑
j=1

xijβ0j︸ ︷︷ ︸
geography controls

+ui ,

▶ Instrument zi : the early settler mortality (200 years ago)
▶ Sample size n = 67
▶ Specification of controls:

▶ Basic: constant, latitude (p = 2)
▶ Flexible: + cubic spline in latitude, continent dummies

(p = 16)

▶ R-package hdm



Some remarks

▶ The current theorem applied to the estimation of a constant
treatment effect α; for personalized decisions we want a
heterogeneous treatment effect α(X )

▶ We want to build a complex ML model for α(X )



Triple ML
[Chernozhukov et al 2017a,b] [Nie and Wager, 2017]

1. Lasso/Regress Y ∼ X ,W , learn q(X ,W ) = Ê [Y |X ,W ]

2. Lasso/Regress D ∼ X ,W , learn p(X ,W ) = Ê [D|X ,W ]

3. minimize residual square loss

min
α(·)∈Θ

1
n

∑
i

(Yi − q(Xi ,Wi )− α(Xi ) · (Di − p(Xi ,Wi )))
2

error in final regression is of the same order as if we knew the
nuisance functions

Comments: reverse causal problem: causal policy learning



Triple ML for Treatment Effect
Binary Treatment [Foster, Syrgkanis, 2019], [Oprescu, Wu, Syrgkanis, 2018]

1. Regress Y ∼ D,X ,W , learn ht(X ,W ) = Ê [Y |D = t,X ,W ]

2. Regress D ∼ X ,W , learn pt(X ,W ) = P̂[D = t|X ,W ] (prob
of treatment)

3. Doubly Robust Target

Y
(t)
i ,DR = ht(Xi ,Wi ) +

(Yi − ht(Xi ,Wi )) · 1{Di = t}
pt(Xi ,Wi )

4. Regress Y
(1)
i ,DR − Y

(0)
i ,DR ∼ X

min
α(·)∈Θ

1
n

∑
i

(
Y

(1)
i ,DR − Y

(0)
i ,DR − α(Xi )

)2



Quantile Graphical Model
(Approximating) Conditional Independence [Belloni, Chen, Chernozhukov 2016]

We consider a non-Gaussian (high-dimensional) setting.

Xa⊥Xb|XV \{a,b}

if and only if

QXa(τ |XV\{a}) = QXa(τ |XV\{a,b}) for all τ ∈ (0, 1), and XV\{a} ∈ XV\{a}

For a set of quantile indices T ⊂ (0, 1), we say that

Xa ⊥T Xb|XV\{a,b}

Xa and Xb are T -conditionally independent given XV\{a,b}
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Estimation of CIQGM

▶ For each a ∈ V ,

QXa(τ |XV \{a}) = CX aβaτ + raτ , βaτ ∈ Rp, for all τ ∈ T

▶ the p-dimensional vector CX a = CX a(XV\{a}) ∈ Rp is based
on transformations of the original covariates XV\{a}

▶ raτ denotes a small approximation error

▶ For b ∈ V \{a},

Ia(b) := {j : CX a
j depends on Xb}

▶ under correct specification, if Xa and Xb are conditionally
independent, we have βaτ,j = 0 for all j ∈ Ia(b), τ ∈ (0, 1)



Estimation of CIQGM (Algorithm 1)

For each a ∈ V , and j ∈ [p], and τ ∈ T , perform the following:
1. Run Post-ℓ1-quantile regression of Xa on CX a

2. Run Post-Lasso of faτCX a
j on faτCX

a
−j

3. Construct the score function

ψ̂i (α) = (τ − 1{Xia ≤ CX a
ijα+ CX a

i,−j β̃aτ,−j})fiaτ (CX a
ij − CX a

i,−j γ̃
j
aτ )

for Laτ j(α) = |En[ψ̂i (α)]|2/En[ψ̂
2
i (α)], set

β̌aτ,j ∈ arg min
α∈Aaτ j

Laτ j(α)



Quantile Graphical Model



Neyman Orthogonality in a Nutshell

Directional derivative:

DαLD(α; g)[vα] =
d

dt
LD(α+ t · vα; g)

A loss LD(α; g) is Neyman Orthogonal if

DgDαLD(α0; g0)[vα, vg ] = 0

Intuition:
Small perturbation of nuisance g around its true value, do not
change the gradient information of the loss with respect to target



Take-Away

▶ Neyman orthogonality can improve ML theory for causal
problems

▶ Robustness to nuisance errors and improved quality of target
parameters while maintaining causal interpretation

▶ Enables asymptotically valid confidence interval construction

▶ Nicely blends with modern and classical statistics/econometrics


