Online Learning with Semiparametric Stochastic Approximation

Mingli Chen Kengo Kato University of Warwick Cornell University Ye Luo University of Hong Kong

1/23

Preliminary, May 2025

Motivation

• Online Learning

- Rapid growth driven by real-world applications and the digital economy.
- Processes data incrementally without storing the full dataset—ideal for large-scale problems.
- Real-time decision, enables immediate responses to new information as it arrives.

• Challenges in Estimation and Inference with Streaming Data

- Existing work is largely restricted to parametric models.
- Many problems involve:
 - Low-dimensional parameters of interest.
 - High-dimensional/nonparametric nuisance component.
- Semiparametric approaches remain underexplored.
- Inference: all intermediate estimates must be retained for variance calculation...

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 2/23

(Stochastic) Gradient Descent

A stochastic approximation method (Robbins and Monro [1951]), such as Stochastic Gradient Descent (SGD), is a salable algorithm for parameter estimation.

Let each observation at time t be $U_t = (y_t, x_t)$, where y_t is the response, $x_t \in \mathbb{R}^{d_1}$ is a low-dimensional covariate vector.

- Traditional SGD goal: find $\theta^* = \arg \min \mathbb{E}[f(\theta; U)]$
- $f(\cdot)$: (unknown) function, may correspond to a squared loss function
- Iterative updating rule:

$$\theta_t = \theta_{t-1} - \eta_t \underbrace{\nabla f(\theta_{t-1}; y_t, x_t)}_{:=G(\theta_{t-1}; U_t)}, \tag{1}$$

recursively updates the estimate upon the arrival of each data point x_t , for t = 1, ..., T.

SGD (Cont.)

Especially relevant for online learning

- η_t : learning rate at time t
- ∇f : gradient of $f(\cdot)$

Iterative algorithm converges to θ^* with high probability. Adaptive learning in macroeconomics, $\eta_t = 1/t$.

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the current data and the previous estimate.

Case 1. Consider the following model:

$$F_{y_t|x_t,v_t;\theta_{\tau}}^{-1}(\tau) = x_t^{\mathsf{T}}\theta_{\tau,1} + \underbrace{P^{k_t}(v_t)^{\mathsf{T}}\theta_{\tau,2} + r_{\tau,t}}_{:=\lambda_{\tau}(v_t)}$$
(2)

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the current data and the previous estimate.

Case 1. Consider the following model:

$$F_{y_t|x_t,v_t;\theta_{\tau}}^{-1}(\tau) = x_t^{\mathsf{T}}\theta_{\tau,1} + \underbrace{P^{k_t}(v_t)^{\mathsf{T}}\theta_{\tau,2} + r_{\tau,t}}_{:=\lambda_{\tau}(v_t)}$$
(2)

- Approximation $\lambda_{\tau}(v_t)$ using a sieve basis expansion $P^{k_t}(v_t)$.
- Denote $\theta_{\tau} = (\theta_{\tau,1}, \theta_{\tau,2})$, and $P^{k_t}(w_t) = (x_t, P^{k_t}(v_t))$ is the Sieve to use at time t.
- k_t can be pre-specified as a function of T, the terminal value of t. Abbreviate k_t as κ .

As a result, we can write down a semi-parametric stochastic approximation process as:

$$\theta_t = \theta_{t-1} - \eta_t P^{\kappa}(w_t) (\tau - 1(P^{\kappa}(w_t)^{\mathsf{T}} \theta_{t-1} - y_t < 0)), \tag{3}$$

where we focus on $\eta_t = \eta_0 t^{-\alpha}$ as the learning rate, with $\eta_0 > 0$, and $\alpha \in (1/2, 1]$.

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 5 / 23

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the current data and the previous estimate.

Case 2. Consider the following model:

$$y_t = x_t^{\mathsf{T}} \theta_1 + \underbrace{P^{k_t}(v_t)^{\mathsf{T}} \theta_2 + r_t}_{:= \lambda(v_t)} + \varepsilon_t \tag{4}$$

- Approximation $\lambda(v_t)$ using a sieve basis expansion $P^{k_t}(v_t)$.
- Denote $\theta = (\theta_1, \theta_2)$, and $P^{k_t}(w_t) = (x_t, P^{k_t}(v_t))$ is the Sieve to use at time t.
- k_t can be pre-specified as a function of T, the terminal value of t. Abbreviate k_t as κ .

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the current data and the previous estimate.

Case 2. Consider the following model:

$$y_t = x_t^{\mathsf{T}} \theta_1 + \underbrace{P^{k_t}(v_t)^{\mathsf{T}} \theta_2 + r_t}_{:=\lambda(v_t)} + \varepsilon_t \tag{4}$$

- Approximation $\lambda(v_t)$ using a sieve basis expansion $P^{k_t}(v_t)$.
- Denote $\theta = (\theta_1, \theta_2)$, and $P^{k_t}(w_t) = (x_t, P^{k_t}(v_t))$ is the Sieve to use at time t.
- k_t can be pre-specified as a function of T, the terminal value of t. Abbreviate k_t as κ .

As a result, we can write down a semi-parametric stochastic approximation process as:

$$\theta_t = \theta_{t-1} - \eta_t P^{\kappa}(w_t) (P^{\kappa}(w_t)^{\mathsf{T}} \theta_{t-1} - y_t), \tag{5}$$

where we focus on $\eta_t = \eta_0 t^{-\alpha}$ as the learning rate, with $\eta_0 > 0$, and $\alpha \in (1/2, 1]$.

This Paper (Cont.)

Case 1. Given τ , κ , define $U_t = (y_t, w_t)$, and

$$G(\theta_{t-1}; U_t) = P^{\kappa}(w_t)^{\mathsf{T}} (\tau - 1(P_{\kappa}(w_t)^{\mathsf{T}} \theta_{t-1} - y_t < 0)).$$
 (6)

Also, define $\theta^* := (\theta_{\tau,1}^*, \theta_{\tau,\kappa,2}^*)$ where

$$\theta_{\tau,\kappa,2}^* := \arg\min_{\theta_2} \|\lambda_{\tau}(v_t) - P^{\kappa}(v_t)^{\mathsf{T}} \theta_2\|_d \tag{7}$$

7/23

for some $\theta_2 \in \mathbb{R}^{\kappa}$.

This Paper (Cont.)

Case 2. Given κ , define $U_t = (y_t, w_t)$, and

$$G(\theta_{t-1}; U_t) = P^{\kappa}(w_t)^{\mathsf{T}} (P_{\kappa}(w_t)^{\mathsf{T}} \theta_{t-1} - y_t). \tag{8}$$

Also, define $\theta^* := (\theta_1^*, \theta_{\kappa,2}^*)$ where

$$\theta_{\kappa,2}^* := \arg\min_{\theta_2} \|\lambda_{\tau}(v_t) - P^{\kappa}(v_t)^{\mathsf{T}} \theta_2\|_d \tag{9}$$

8 / 23

for some $\theta_2 \in \mathbb{R}^{\kappa}$.

Illustrative Example of Motivation

Applicable to general control function approach in various models, e.g. Lee [2007]

$$y = x\beta_{\tau} + z_1^{\mathsf{T}}\gamma_{\tau} + u,\tag{10}$$

$$x = \mu(\alpha) + z^{\mathsf{T}}\pi(\alpha) + v,\tag{11}$$

and

$$Q_{u|x,z}(\tau) = \lambda_{\tau}(v). \tag{12}$$

The parameter of interest is the quantile parameter $\beta_{\tau} \in \mathbb{R}^p$ and $\gamma_{\tau} \in \mathbb{R}^{d_{z1}}$ for a specific value of quantile τ , with vector of exogenous explanatory variables $z \in \mathbb{R}^q$.

With a conditional independence condition that u|v,z=u|v, it can be shown that

$$F_{y|x,z;\theta}^{-1}(\tau) = x\beta_{\tau} + z_1'\gamma_{\tau} + \lambda_{\tau}(v)$$
(13)

where $\lambda_{\tau}(v)$ is a unknown non-parametric function of v. Here, $\theta_{\tau,1} = (\beta_{\tau}, \gamma_{\tau})$

Relation to Literature (very selective)

- Traditional stochastic gradient descent algorithm
 - Robbins and Monro [1951], Kiefer and Wolfowitz [1952], Ruppert [1988], Polyak and Juditsky [1992].
- Online learning
 - Bottou et al. [1998], Mairal, Bach, Ponce, and Sapiro [2010], Hoffman, Bach, and Blei [2010].
- Recent work focusing on inference
 - Chen, Liu, and Zhang [2021], Li, Liu, Kyrillidis, and Caramanis [2018], Forneron [2022], Lee, Liao, Seo, and Shin [2022], Fang, Xu, and Yang [2018].

Algorithm 1 Semi-SGD for SQR as in (5)

Input : Function

Initialization: Set θ , κ , B and T

for t = 1, ..., T and b = 1, ..., B do

for any positive integer κ , construct $P^{\kappa}(w_t) = [x_t, p_{1\kappa}(v_t), ..., p_{\kappa\kappa}(v_t)]$ and update θ (and θ^b) via

$$\begin{aligned} \theta_t &= \theta_{t-1} - \eta_t \cdot P^{\kappa}(\omega_t) (\tau - \mathbf{1}(P^{\kappa}(\omega_t)^{\mathsf{T}} \theta_{t-1} - y_t < 0)), \\ \theta_t^b &= \theta_{t-1}^b - \eta_t \cdot W_{t,b} \cdot P^{\kappa}(\omega_t) (\tau - \mathbf{1}(P^{\kappa}(\omega_t)^{\mathsf{T}} \theta_{t-1} - y_t < 0)), \end{aligned}$$

where η_t and $W_{t,b}$ are the step sizes (learning rates) and bootstrap weights of the t-th update respectively.

end

Output

: obtain (1- α)-confidence interval estimator of $\bar{\theta}_t$: $\bar{\theta}_t \pm z_{\alpha/2} \tilde{\sigma}_B$, where $\tilde{\sigma}_B$ obtained from the bootstrap procedure.

Algorithm 2 Semi-SGD Control Function Approach for endogenous QR as in (13), given τ

Input : Function

Initialization : Set θ , T_1 , κ , B, and T

Step 1 (the offline CF-QR) : for $t = 1, ..., T_1$ do

Observe $(y_{1:T_1}, x_{1:T_1}, z_{1,1:T_1}, z_{2,1:T_1})$ Step 1a: Run QR of $x_{1:T_1}$ on $(1, z_{1,1:T_1}, z_{2,1:T_1})$ get

$$\pi_{T_1}$$
 and $v_{1:T_1}$ from eq (11)

Step 1b: Given $\hat{v}_{1:T_1}$ as estimates of $v_{1:T_1}$, consider a series regression with $w_{1:T_1} = (x_{1:T_1}, z_{1,1:T_1}, P^{\kappa}(\hat{v}_{1:T_1}))$ as covariates, where $P^{\kappa}(\hat{v}_{1:T_1})$ is a Sieve of $\hat{v}_{1:T_1}$; Run QR again of $y_{1:T_1}$ on $w_{1:T_1}$, and obtain estimates of

$$(\hat{\beta}_{\tau,T_1},~\hat{\gamma}_{\tau,T_1})$$

end

Step 2 (the online semi-SGD part): for $t = T_1 + 1, \dots, T$ do

Step 2a: Given quantile index α , update π and v

$$\pi_t = \pi_{t-1} - \eta_{1t} \cdot z_t^{\mathsf{T}} (\alpha - \mathbf{1}(z_t^{\mathsf{T}} \pi_{t-1} - x_t < 0));$$

$$v_t = x_t - z_t^{\mathsf{T}} \pi_t$$

Step 2b: for any positive integer κ , construct $P^{\kappa}(w_t) = [x_t, z_{1t}, p_1(v_t), ..., p_{\kappa}(v_t)];$ and update θ

$$\theta_t = \theta_{t-1} - \eta_{2t} \cdot P_{\kappa}(w_t)(\tau - \mathbf{1}(P_{\kappa}(w_t)^{\mathsf{T}}\theta_{t-1} - y_t < 0));$$

end

 η_{1t} and η_{2t} are the step sizes (learning rates) of the t-th update for Step 1 and Step 2 respectively.

Comments

- Allow for κ increase at each step
- For the Initial Step in Algorithm 2, we are using T_1 observations to get good initial estimates for $\lambda_{\tau}(v)$
- For asymptotic results, discuss two cases, $\alpha \in (1/2, 1)$, and $\alpha = 1$
- stochastic (sub)gradient descent

Assumptions

- 1 (a) Data $U_t = \{(y_t, x_t, v_t), t = 1, ..., T\}$ are independently distributed. x_t, v_t has bounded and compact support $\mathcal{X} \times \mathcal{V}$; (b) $\lambda(v)$ is r-times continuously differentiable on \mathcal{V} .
- 2 Denote

$$A_{\kappa} := -\nabla \bar{G}(\theta_{\kappa}) = \mathbb{E}\big[P^{\kappa}(w_t)P^{\kappa}(w_t)^{\mathsf{T}}\big],\tag{14}$$

the Jacobian (Hadamard derivative) of the population gradient at θ_{κ} . Assume all eigenvalues of A_{κ} being positively bounded away from 0. Denote the lower bound is ψ .

- 3 For power series $\kappa = C_1 t^{v_1}$ for some constants C_1 satisfying $0 < C_1 < \infty$ and some v_1 satisfying $1/(2r) < v_1 < 1/8$, and for splines $\kappa = C_2 t^{v_2}$ for some constants C_2 satisfying $0 < C_2 < \infty$ and some v_2 satisfying $1/(2r) < v_2 < 1/5$.
- 4 (i) There exists a sequence $\zeta_0(\kappa)$ such that $\sup_{v \in \mathcal{V}} \|P^{\kappa}(v)\| \leq \zeta_0(\kappa)$, with $\zeta_0(\kappa)^2 \kappa / t^{\alpha/2} \to 0$. (ii) $\|\lambda^*(\cdot) - P^{\kappa}(\cdot)^{\mathsf{T}}\theta_{\kappa/2}^*\| \leq C\kappa^{-\zeta}$ for some fixed constant C > 0 and $\zeta > 0$.

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 14/23

• Consider $\bar{G}(\theta) := \mathbb{E}[G(\theta; U_t)]$. It can be shown that

$$\bar{G}(\theta^*) = \mathbb{E}\left[P^{\kappa}(w_t)^{\mathsf{T}} \left(y_t - P^{\kappa}(w_t)^{\mathsf{T}} \theta^*\right)\right] \tag{15}$$

$$= \mathbb{E}\left[P^{\kappa}(w_t)^{\mathsf{T}}\left(x_t\theta_1^* + \lambda(v_t) - P^{\kappa}(w_t)^{\mathsf{T}}\theta_{\kappa,2}^*\right)\right]$$
(16)

$$= \mathbb{E}\left[P^{\kappa}(w_t)^{\mathsf{T}}\left(\lambda(v_t) - P^{\kappa}(v_t)^{\mathsf{T}}\theta_{\kappa,2}^*\right)\right] + O\left(\|\lambda(v_t) - P^{\kappa}(v_t)^{\mathsf{T}}\theta_{\kappa,2}^*\|^2\right),\tag{17}$$

under some regularity conditions, we can conclude that for each component of $\bar{G}(\cdot)$, we have that: $|\bar{G}_{i}(\theta^{*})| \leq C't^{-\nu'}$, $j = 1, 2, ..., d_{w}$ for some fixed constant C' > 0.

Decomposition for fixed κ

$$\theta_t - \theta^* = \theta_{t-1} - \theta^* - \eta_t \bar{G}(\theta_{t-1}) - \eta_t (G(\theta_{t-1}; U_t) - \bar{G}(\theta_{t-1}))$$
(18)

$$= (I - \eta_t A_\kappa)(\theta_{t-1} - \theta^*) - \eta_t r(\theta_{t-1} - \theta^*) - \eta_t (G(\theta_{t-1}; U_t) - \bar{G}(\theta_{t-1})), \tag{19}$$

with $r(\theta - \theta^*) = \bar{G}(\theta) - \bar{G}(\theta^*) - A_{\kappa}(\theta - \theta^*)$ high order residual.

Define $Q_{s,t} = \Pi_{l=s}^{t-1} (I - \eta_l A_{\kappa})$ which is a matrix discount factor. The updating condition can be written as:

$$\theta_t - \theta^* = \underbrace{Q_{0,t}(\theta_0 - \theta^*)}_{\Psi_1} - \underbrace{\sum_{s=1}^{t-1} \eta_s Q_{s,t} r(\theta_s - \theta^*)}_{\Psi_2} - \underbrace{\sum_{s=1}^{t-1} \eta_s Q_{s,t} (G(\theta_s, U_s) - \bar{G}(\theta_s))}_{\Psi_3}, \tag{20}$$

By construction, we have that $Q_{s,t} \leq \exp(-\frac{\eta_0 \psi}{1-\alpha}(t^{1-\alpha}-s^{1-\alpha}))$ for $\alpha \in (0,1)$, and $Q_{s,t} \leq \left(\frac{s}{t}\right)^{\eta_0 \psi}$ when $\alpha = 1$.

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 16 / 23

Lemma 1 [Risk Bound]

Define a metric,
$$\|\theta_t - \theta_{\kappa}\|_d^2 := \|\theta_{t,1} - \theta_1\|^2 + \mathbb{E}_{w_s}[|P(w_s)^{\mathsf{T}}(\theta_{t,2} - \theta_{\kappa,2})|^2].$$

When the learning rate is $\eta_t = \eta_0 t^{-\alpha}$, for t large enough, we have:

$$\mathbb{E}[\|\theta_t - \theta_\kappa\|_d^2] \le \begin{cases} C_1 t^{-\alpha} \ln t, & \text{if } \alpha \in \left(\frac{1}{2}, 1\right), \\ C_2 t^{-1}, & \text{if } \alpha = 1 \text{ and } 2\psi \eta_0 > 1, \end{cases}$$

for some fixed positive constants $\eta_0, C_1, C_2 > 0$.

Asymptotics

Define $L_{\kappa} = \frac{1}{t} \sum_{s=1}^{t} P^{\kappa}(w_s) P^{\kappa}(w_s)^{\mathsf{T}}$. $A_{\kappa}^* := -\nabla \bar{G}(\theta_{\kappa}^*)$ When $\alpha < 1$.

$$\Sigma_{\kappa} := \eta_0 \int_0^{\infty} \exp(-uA_{\kappa}^*) L_{\kappa} \exp(-uA_{\kappa}^*)^{\mathsf{T}} du, \tag{21}$$

and when $\alpha = 1$,

$$\Sigma_{\kappa} := \eta_0 \int_0^{\infty} \exp(-u/\eta_0) \exp(-uA_{\kappa}^*) L_{\kappa} \exp(-uA_{\kappa}^*)^{\mathsf{T}} du. \qquad (22)$$

The additional term $\exp(u/\eta_0)$ accounts for the linearly decaying step size.

Consider any C^1 functional $g(\theta_1^*, \lambda(\cdot))$ with bounded derivative that is approximated by $g(\theta_{1,t}, P^{\kappa}(\cdot)^{\mathsf{T}}\theta_{2,t})$. Denote

$$\Omega_{\kappa} := \begin{pmatrix} \frac{\partial b}{\partial \theta_{1}, t} \\ \frac{\partial b}{\partial P_{k}^{\kappa}(\lambda)} \end{pmatrix}$$
. That said, g is Hadamard differentiable with respect to λ , e.g.,

$$g(\theta_{1,t}, P^{\kappa}(v)^{\mathsf{T}}\theta_{2,t}) = a^{\mathsf{T}}\theta_{1,t} + \int_{v} P^{\kappa}(v)^{\mathsf{T}}\theta_{2,t}\mu(v)$$
(23)

for some probability measure $\mu(v)$.

Theorem 1. If all the assumptions above hold and: $\kappa^{-\zeta}t^{\alpha/2} \to 0$, $\zeta_0^2(\kappa)\kappa/t^{\alpha/2} \to 0$.

$$\sqrt{\eta_0 t^{\alpha}} \left(\Omega_{\kappa}^{\mathsf{T}} \Sigma_{\kappa} \Omega_{\kappa} \right)^{-\frac{1}{2}} \left(g(\theta_{1,t}, P_{\kappa}(\cdot)^{\mathsf{T}} \theta_{2,t}) - g(\theta_{1}^{*}, \lambda(\cdot)) \right) \rightsquigarrow N(0, 1). \tag{24}$$

Chen, Kato, Luo Semi-SGD **Preliminary**, May 2025 18 / 23

- DGP1: $Y = \mu + X_1\beta + X_2\gamma_1 + X_3 + X_4^2 + X_5^3 + X_6^4 + X_7^5 + U * (X_1\beta + X_2\gamma_1)$
- DGP2 (cf. Lee [2007]):

$$Y_i = X_i \beta + Z_{1i} \gamma + U_i, \quad U_i = V_i + \phi(V_i) + 0.5 [\tilde{U}_i - F_{\tilde{U}}^{-1}(\tau)],$$

 $X_i = \mu + Z_{1i} \pi_1 + Z_{2i} \pi_2 + V_i, \quad V_i = \exp(Z_{2i}/2) \tilde{V}_i, \quad i = 1, ..., n$

where $Z_{1i}, Z_{2i}, \tilde{V}_i$ and \tilde{U}_i are independently drawn from the standard normal distribution, $\phi(v) = 4 \exp[-(v-1)^2]$, and $F_{\tilde{U}}$ is the CDF of \tilde{U} . The function $\phi(v)$ has a bell-shaped hump around one and represents a nonlinear component of $\lambda_{\tau}(v) = v + \phi(v)$. We set the parameter values $(\beta, \gamma, \mu, \pi_1, \pi_2) = (1, 1, 1, 3, 1)$. In all experiments $\tau = 0.9$ and $\alpha = 0.5$.

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 19 / 23

Figure 1: The simulation paths for SQR1 for $n = \{6000, 9000, 12, 000\}$, k = 3, and coefficients $\{1, 0.5, 0.2\}$

Table 1: Coverage Probabilities of 95% Confidence Intervals for Semiparametric QR

	$(\Lambda$	\overline{V}, k, au	
(12000, 3, 0.5)			
Bias	-0.003	0.0004	-0.0005
SE	0.004	0.008	0.005
CP	0.98	0.95	0.97
	(1200	(00, 4, 0.5)	
Bias	-0.0005	0.0001	0
SE	0.004	0.008	0.005
CP	0.99	0.96	0.97
	(1200	(0, 5, 0.5)	
Bias	-0.015	0.003	0.001
SE	0.01	0.01	0.01
CP	0.94	0.96	0.97

Based on 500 simulations, with $(\mu, \beta_1, \gamma_1) = (1, 0.5, 0.2)$

Figure 2: The simulation paths for SQR1, $n = 12,000, k \in \{3,4,5\}$, and coefficients $\{1,0.5,0.2\}$

Figure 3: The simulation paths for SQR2, $n = \{6000, 9000, 12, 000\}$, k = 7, and coefficients $\{1, 1, 1\}$

- L. Bottou et al. Online learning and stochastic approximations. On-line learning in neural networks, 17(9):142, 1998.
- X. Chen, W. Liu, and Y. Zhang. First-order newton-type estimator for distributed estimation and inference. *Journal of the American Statistical Association*, pages 1–17, 2021.
- Y. Fang, J. Xu, and L. Yang. Online bootstrap confidence intervals for the stochastic gradient descent estimator. *Journal of Machine Learning Research*, 2018.
 J.-J. Forneron. Estimation and inference by stochastic optimization. arXiv preprint
- arXiv:2205.03254, 2022.
- M. Hoffman, F. Bach, and D. Blei. Online learning for latent dirichlet allocation. *advances in neural information processing systems*, 23, 2010.
- J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. *The Annals of Mathematical Statistics*, pages 462–466, 1952.
- S. Lee. Endogeneity in quantile regression models: A control function approach. *Journal of Econometrics*, 141(2):1131–1158, 2007.
- S. Lee, Y. Liao, M. H. Seo, and Y. Shin. Fast inference for quantile regression with tens of millions of observations. *Available at SSRN 4263158*, 2022.

Chen, Kato, Luo Semi-SGD Preliminary, May 2025 23/23

- T. Li, L. Liu, A. Kyrillidis, and C. Caramanis. Statistical inference using sgd. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 11(1), 2010.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.
- H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.
- D. Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical report, Cornell University Operations Research and Industrial Engineering, 1988.