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Motivation

@ Online Learning
e Rapid growth driven by real-world applications and the digital economy.
e Processes data incrementally without storing the full dataset—ideal for large-scale
problems.
o Real-time decision, enables immediate responses to new information as it arrives.

e Challenges in Estimation and Inference with Streaming Data
o Existing work is largely restricted to parametric models.
e Many problems involve:
o Low-dimensional parameters of interest.
o High-dimensional /nonparametric nuisance component.
e Semiparametric approaches remain underexplored.
o Inference: all intermediate estimates must be retained for variance calculation..
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(Stochastic) Gradient Descent

A stochastic approximation method (Robbins and Monro [1951]), such as Stochastic
Gradient Descent (SGD), is a salable algorithm for parameter estimation.

Let each observation at time ¢t be U; = (y;, x¢), where y; is the response, z; € R% is a
low-dimensional covariate vector.

e Traditional SGD goal: find 0* = argmin E[f(0; U)]

e f(+): (unknown) function, may corresponds to a squared loss function
o Iterative updating rule:
Or = Or—1 — eV f(01—1; Y, 1), (1)
—_———
=G (0i—1;Us)
recursively updates the estimate upon the arrival of each data point =y, fort =1,...,T.
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SGD (Cont.)

Especially relevant for online learning
e 7 learning rate at time ¢

e Vf: gradient of f(-)

Iterative algorithm converges to #* with high probability.

Adaptive learning in macroeconomics, 1, = 1/t.
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This Paper

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the

current data and the previous estimate.
Case 1. Consider the following model:

F@Zﬁrt,vt;&- (T) = IEGT,l + Pkt (vt)TgT,Q + Trt

=7 (ve)
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This Paper

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the

current data and the previous estimate.
Case 1. Consider the following model:

Fy_t|1ff,ﬂ)t;9r (T) = IEGT,l + Pkt (vt)TgT,Q + Trt

=7 (ve)
@ Approximation A, (v;) using a sieve basis expansion P (v;)

@ Denote 0, = (0-,1,0-2), and Pk (we) = (mt, Pk (vt)) is the Sieve to use at time ¢.

@ k; can be pre-specified as a function of T', the terminal value of ¢. Abbreviate k; as k.

As a result, we can write down a semi-parametric stochastic approximation process as:
Op = Op—1 — me P™(we) (T — 1(P"(we)T0r—1 — yr <0)),

where we focus on 7, = not~* as the learning rate, with ny > 0, and « € (1/2,1].
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This Paper

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the

current data and the previous estimate.
Case 2. Consider the following model:

Yp = xtTHl =+ Pkt ('Ut)T92 + 7y + &t
—_———
=A(vy)
@ Approximation A(v¢) using a sieve basis expansion P**(v;)

@ Denote 0 = (61, 62), and P** (w;) = (w¢, P**(v:)) is the Sieve to use at time ¢

@ k; can be pre-specified as a function of T', the terminal value of . Abbreviate k: as k.
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This Paper

Propose Semi-SGD as a one-pass algorithm: low space and time complexity, requiring only the
current data and the previous estimate.

Case 2. Consider the following model:

Yt :xtTHl +Pkt(’ljt)T92 + 7y + &t (4)
—_—
=A(vy)

@ Approximation A(v¢) using a sieve basis expansion P**(v;)

@ Denote 0 = (61, 62), and P** (w;) = (w¢, P**(v:)) is the Sieve to use at time ¢

@ k; can be pre-specified as a function of T', the terminal value of . Abbreviate k: as k.

As a result, we can write down a semi-parametric stochastic approximation process as:

0p = 011 — 0y P™ (we) (P™ (we)T0:—1 — ye),

where we focus on 7; = ot~ as the learning rate, with ny > 0, and « € (1/2,1].
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This Paper (Cont.)

Case 1. Given 7, k, define Uy = (y¢, w), and
G(Qt_l; Ut) = P’i(’wt)T(T - 1(P,i(wt)T0t_1 — Yt < O)) (6)
Also, define 0" := (07 1,07 . 5) where

07 2 = argmin [ Ar(vy) — P (0) 02 ]la (7)
2

for some 65 € R".
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This Paper (Cont.)

Case 2. Given &, define Uy = (y;, w;), and
G(01—1;Up) = P™(we) T (Pe(we) 01 — ye)- (8)
Also, define 6* := (07,0} ;) where

02 = argmin [|Ar (v) — P"(v¢)702]la (9)
2

for some 65 € R".
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[lustrative Example of Motivation

Applicable to general control function approach in various models, e.g. Lee [2007]

Yy = xﬂ‘r + ZI’YT + u, (10)
z = p(a)+ 2T7(a) + v, (11)

and
Qu|w,z(T) = )\T(U)' (12)

The parameter of interest is the quantile parameter 3, € RP and v, € R?% for a specific value of
quantile 7, with vector of exogenous explanatory variables z € RY.

With a conditional independence condition that u|v, z = ulv, it can be shown that
Fy_|m17z;9(7') =xf; + Zi%— + AT(U) (13)

where A\-(v) is a unknown non-parametric function of v. Here, 6,1 = (8-, 7+)
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Relation to Literature (very selective)

e Traditional stochastic gradient descent algorithm

o Robbins and Monro [1951], Kiefer and Wolfowitz [1952], Ruppert [1988], Polyak and
Juditsky [1992].

@ Online learning

o Bottou et al. [1998], Mairal, Bach, Ponce, and Sapiro [2010], Hoffman, Bach, and Blei
2010].

@ Recent work focusing on inference

o Chen, Liu, and Zhang [2021], Li, Liu, Kyrillidis, and Caramanis [2018], Forneron [2022],
Lee, Liao, Seo, and Shin [2022], Fang, Xu, and Yang [2018].
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Algorithm 1 Semi-SGD for SQR as in (5)

Input : Function
Initialization: Set 0, k, B and T
fort=1,...,T andb=1,..,B do
for any positive integer &, construct P*(w;) = [z¢, p1(ve), ..., Prx(v¢)] and update 6 (and 6°) via

Ht = (9,5,1 — Nt - P“(wt)(T — 1(Pn(wt)T9t,1 -y < 0)),
07 = 00—y —m- Wi P™(wr)(r — L(P™(w)T6i—1 — y: < 0)),
where 7, and W, ;, are the step sizes (learning rates) and bootstrap weights of the ¢-th update respectively.
end

Output : obtain (1-a)-confidence interval estimator of gtiza/Q&B, where &g obtained from the bootstrap
procedure.
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Algorithm 2 Semi-SGD Control Function Approach for endogenous QR as in (13), given 7

Input : Function
Initialization : Set 0, Th, k, B, and T
Step 1 (the offline CF-QR) : fort=1,...,T; do

Observe (y1:1y, T1:1y, 21,1:1y» 22,0013 ) Step la: Run QR of z1.1y on (1, 21,1:7, 22,11y ) get
mr, and v from  eq (11)

Step 1b: Given o1.p, as estimates of v1.7,, consider a series regression with wy.q, = (z1.1y, 21,1:1y, P*(91:1,)) as
covariates, where P"(01.1,) is a Sieve of 01.7y; Run QR again of y1.7, on wy.py, and obtain estimates of

(BT,TN 'AYT,Tl)
end
Step 2 (the online semi-SGD part): for t =T; +1,...,7 do

Step 2a: Given quantile index «, update 7 and v

o =m-1 — - 7 (@ — 1zl mg — a2 < 0));

vp=a— 20T
Step 2b: for any positive integer s, construct P*(w) = [x¢, 214, P1(V¢), ..., Px(v¢)];  and update 6

Or = 0r—1— 2 - Pn,(wt)(T - 1(P»:(wt)T€t—l -y < 0));

end
1 and 79 are the step sizes (learning rates) of the t-th update for Step 1 and Step 2 respectively.
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Comments

Allow for x increase at each step

e For the Initial Step in Algorithm 2, we are using T} observations to get good initial
estimates for A\, (v)

For asymptotic results, discuss two cases, « € (1/2,1), and o = 1

e stochastic (sub)gradient descent
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Assumptions

1 (a) Data Uy = {(yt, x¢,v¢),t = 1,..., T} are independently distributed. x:,v; has bounded and
compact support X x V; (b) A(v) is r-times continuously differentiable on V.
2 Denote B
Ay = —=VG(0,) = E[P"(wy) P (wy)7], (14)

the Jacobian (Hadamard derivative) of the population gradient at 6,,. Assume all eigenvalues
of A, being positively bounded away from 0. Denote the lower bound is .

3 For power series k = C1t"* for some constants C; satisfying 0 < C'; < oo and some vy
satisfying 1/(2r) < v; < 1/8, and for splines k = C5t¥? for some constants Cs satisfying
0 < Cy < oo and some vy satisfying 1/(2r) < vy < 1/5.

4 (i) There exists a sequence (o(x) such that sup,cy, [|[P*(v)|| < Co(k), with (o(k)2k/t*/2 — 0.
(ii) [[A*(-) = P"(-)TO} 5| < Ck~¢ for some fixed constant C' > 0 and ¢ > 0.
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e Consider G(6) := E[G(0;U,)]. It can be shown that

=E[P"(we)T (ye — P*(w)70%)] (15)
= E[.ZDN ’LUt (xte + )\(’Ut) P”(wt)THZ’Q)] (16)
= E[P"(we)T(Mve) — P ()05 5) ] + O([[M(ve) — P (ve) 705 o] %), (17)

under some regularity conditions, we can conclude that for each component of G(-), we have
that: |G;(0%)] < C't™", j=1,2,...,d, for some fixed constant C’ > 0.
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Sketch of Proofs

Decomposition for fived k

Oy —0* =0, 1 — 0" — 0. G(0;_1) — e (G(Or_1;Uy) — G(04_1)) (18)
= (I =nAx) (01— 0%) = mer(B—1 — 0%) — 0 (G(0:-1; Ur) — G(0,-1)), (19)

with 7(6 — 6*) = G(0) — G(6*) — A, (6 — 6*) high order residual.
Define Qs+ = Hf;;([ — mAg) which is a matrix discount factor. The updating condition can be
written as:

t—1 t—1
0r — 0" = Qo0 — 07) = > 1sQusr(8s = 07) = > 0sQs4(G(0,Us) — G(6,)), (20)
T s=1 s=1
\112 ‘IIIS
By construction, we have that Q,; < exp(— fﬂlf; (1= — s17)) for v € (0,1), and Q,, < (%)now

when oo = 1.
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Lemma 1 |Risk Bound|

Define a metric, ||0; — 0,13 == [|01,1 — 01]]* + Euw, [|P(ws) (012 — 0,.2)]?].

When the learning rate is 7y = not~%, for ¢t large enough, we have:

Cit™%Int, ifac€ (%, 1) ,
Cot™1, if « =1 and 2¢no > 1,

E[Het - 01@”3] S {

for some fixed positive constants 79, Cy,Cy > 0.
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Asymptotics

Define L,, = % 2:1 Pr(ws)P"(ws)T. A := —VG(0))
When a < 1,

oo
S = 170-/0 exp(qu:i)L,i exp(qu:)Tdu,

and when a = 1,

.
By = no/o exp(—u/no) exp(—uAy) Ly exp(—uA})T du.

The additional term exp(u/mng) accounts for the linearly decaying step size.
Consider any C! functional g(@{, A(+)) with bounded derivative that is approximated by g(61,¢, P"(-)T62 ). Denote

b
Qp = ( 001,¢ ) That said, g is Hadamard differentiable with respect to A, e.g.,

g
901, PE(0)T02,0) = aT01¢ + [ PR(0)T02,01(0)
v
for some probability measure p(v).

Theorem 1. If all the assumptions above hold and: k¢t /2 0, Cg(n)n/to‘/2 — 0.

V0T (T2 2k) "2 (9(01,4, P ()T0,¢) — 907, A(-))) ~ N(0, 1).

(21)

(22)

(23)

(24)
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Design

o DGPL: Y = u+ X18+ Xoy1 + Xg+ XF + X2 + X¢ + X2+ U x (X18+ Xom)

e DGP2 (cf. Lee [2007]):
Yi=Xi+ Zuy + Ui, Ui = Vi + ¢(Vi) + 0.5[0; — F5 ' (7)),
Xi = p+ Zymi + Zoima + Vi, Vi=exp(Zoi/2)Vi, i=1,...n

where Z1;, Zo;, \N/Z and Uz are independently drawn from the standard normal
distribution, ¢(v) = 4exp[—(v — 1)?], and Fy; is the CDF of U. The function ¢(v) has
a bell-shaped hump around one and represents a nonlinear component of

Ar(v) = v+ ¢(v). We set the parameter values (3,7, u, 71, m2) = (1,1,1,3,1). In all
experiments 7 = 0.9 and o = 0.5.
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Simulation Results

Figure 1: The simulation paths for SQR1 for n = {6000, 9000, 12,000}, k = 3, and coefficients
{1,0.5,0.2}
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T‘dbl(} 1: Coverage Probabilities of 95% Confidence
Intervals for Semiparametric QR

(N, k,T)
(12000, 3,0.5)
Bias -0.003 0.0004 -0.0005
SE 0.004 0.008 0.005

CP 0.98 0.95 0.97
(12000, 4, 0.5)

Bias  -0.0005  0.0001 0
SE 0.004 0.008 0.005
CP 0.99 0.96 0.97

(12000, 5,0.5)

Bias  -0.015 0.003 0.001
SE 0.01 0.01 0.01
CP 0.94 0.96 0.97

Based on 500 simulations, with (u,81,71) =
(1,0.5,0.2)

Chen, Kato, Luo Semi-SGD Preliminary, May 2025

21 /23



Figure 2: The simulation paths for SQR1, n = 12,000, k € {3,4, 5}, and coefficients {1,0.5,0.2}
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Figure 3: The simulation paths for SQR2, n = {6000, 9000, 12,000}, k = 7, and coefficients {1,1,1}
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