An Introduction to Reinforcement Learning

March 16, 2022

Overview

- ▶ What is Reinforcement Learning?
 - A Brief Definition
 - From the perspective of CS: ML v.s. RL
 - ► From the perspective of Econ/OR: DP v.s. RL
 - Practical Implementation

Overview

- What is Reinforcement Learning?
 - A Brief Definition
 - From the perspective of CS: ML v.s. RL
 - From the perspective of Econ/OR: DP v.s. RL
 - Practical Implementation
- Reinforcement Learning in Economics:
 - ► The Latest Literature
 - Sub-Field: Multi-Agent Reinforcement Learning

Overview

- What is Reinforcement Learning?
 - A Brief Definition
 - From the perspective of CS: ML v.s. RL
 - From the perspective of Econ/OR: DP v.s. RL
 - Practical Implementation
- Reinforcement Learning in Economics:
 - ▶ The Latest Literature
 - Sub-Field: Multi-Agent Reinforcement Learning
- ▶ Goal:
 - ▶ Realize that the "AI" is nothing mysterious (Is RL \approx AI?)
 - arise interest to implement RL in your research

► The first thought: Library Cafe v.s. Rootes

- ► The first thought: Library Cafe v.s. Rootes
- ▶ The exploration-exploitation trade-off

- ► The first thought: Library Cafe v.s. Rootes
- ► The exploration-exploitation trade-off
- Reinforcement Learning is about an Agent learns via interacting with an Environment
 - State of the Environment
 - Action taken by the Agent
 - Reward from the Action

- ► The first thought: Library Cafe v.s. Rootes
- ► The exploration-exploitation trade-off
- Reinforcement Learning is about an Agent learns via interacting with an Environment
 - State of the Environment
 - Action taken by the Agent
 - Reward from the Action
- ► The "Literal Decomposition":
 - Learning: Optimal Policy
 - ► Reinforcement: Reward-Driven

What is RL: A Brief Definition

- Definition: A Markov decision process (MDP) is a 4-tuple (S, A, P_a, R_a) , where:
 - S is a set of states called the state space
 - ► A is a set of actions called the action space
 - $P_a(s, s') = \Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$ is the prob. that action a in state s at time t will lead to state s' at time t+1
 - $R_a(s, s')$ is the immediate reward received after transitioning from state s to state s', due to action a

What is RL: A Brief Definition

- Definition: A Markov decision process (MDP) is a 4-tuple (S, A, P_a, R_a) , where:
 - S is a set of states called the state space
 - A is a set of actions called the action space
 - $P_a(s,s') = \Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$ is the prob. that action a in state s at time t will lead to state s' at time t+1
 - $R_a(s, s')$ is the immediate reward received after transitioning from state s to state s', due to action a
- RL solves problems of MDPs:
 - ▶ agent observes state $s_t \in \mathcal{S}$, takes an action $a_t \in \mathcal{A}$ based on a policy $\pi \in \mathcal{S} \to \mathcal{A}$, the environment produces a reward r_t and moves to s_{t+1}
 - ▶ the goal is to find an optimal policy that obtaining accumulative rewards $\sum_{i=1}^{n} \gamma^{t} R_{t}$



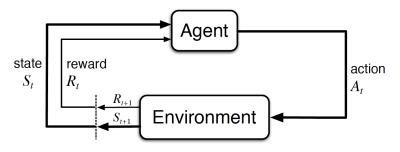


Figure: Agent-Envrionement Interaction by Sutton and Barto(2008)

What is RL: an Illustration

► State: current position

Action: Up, Low, Left, Right

► Reward: ?

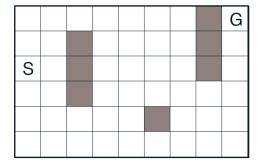


Figure: An Maze Problem

Decision Making is a BIG inter-disciplinary topics!

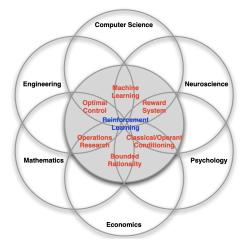


Figure: Related Disciplines by David Silver

Machine Learning: Supervised Learning

- ▶ Data: $\{x_i, y_i\}_{i=1...N}$
- ▶ Task: find $f : \mathbb{X} \to \mathbb{Y}$ such that $f(x) \approx y$
- ▶ the training is to minimize the loss w.r.t a criteria, e.g. the mean-square-error (MSE): $\sum_{i} (f(x_i) y_i)^2$
- ► Two categories: regression and classification
- "Supervised": You know what is true

Machine Learning: Supervised Learning

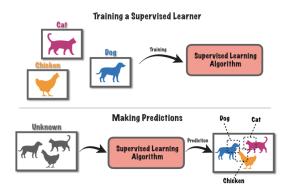


Figure: Supervised Learning

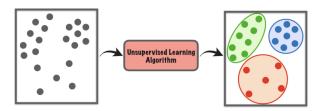
Supervised Learning: An illustration

The "Hello World" problem in supervised learning

Figure: MNIST data

Machine Learning: Unsupervised Learning

- ▶ Data: $\{x_i\}_{i=1...N}$
- ► Task: find some sort of underlying structure, correctly label/group the data based on the characteristics x_i
- "Unsupervised": You DON'T know what is true



Machine Learning: Reinforcement Learning

- ▶ Reinforcement Learning belongs to "Semi-Supervised Learning"
- We don't directly observe what is optimal, but rather some signals

Machine Learning: Reinforcement Learning

- Reinforcement Learning belongs to "Semi-Supervised Learning"
- We don't directly observe what is optimal, but rather some signals
- Also, what turns out to be "optimal" is sequentially-dependent

Machine Learning: Reinforcement Learning

- Reinforcement Learning belongs to "Semi-Supervised Learning"
- We don't directly observe what is optimal, but rather some signals
- Also, what turns out to be "optimal" is sequentially-dependent
- The case of GO

ightharpoonup First assume $\mathcal S$ and $\mathcal A$ are discrete and finite for simplicity

- lacktriangle First assume ${\mathcal S}$ and ${\mathcal A}$ are discrete and finite for simplicity
- define the accumulative reward $G_t = \sum_{t=1}^n \gamma^t R_t$

- lacktriangle First assume ${\cal S}$ and ${\cal A}$ are discrete and finite for simplicity
- define the accumulative reward $G_t = \sum_{t=1}^n \gamma^t R_t$
- Formally, the Bellman Equation:

$$V_{\pi}(s) = \mathbb{E}\left[R_t + \gamma G_{t+1} \mid S_t = s, A_t \sim \pi(s)\right]$$

= $\mathbb{E}\left[R_t + \gamma V_{\pi}\left(S_{t+1}\right) \mid S_t = s, A_t \sim \pi(s)\right]$

Here $a \sim \pi(s)$ means a is chosen by policy π in state s (note that π may be deterministic or stochastic)

- lacktriangle First assume ${\cal S}$ and ${\cal A}$ are discrete and finite for simplicity
- define the accumulative reward $G_t = \sum_{t=1}^n \gamma^t R_t$
- Formally, the Bellman Equation:

$$V_{\pi}(s) = \mathbb{E}\left[R_t + \gamma G_{t+1} \mid S_t = s, A_t \sim \pi(s)\right]$$

= $\mathbb{E}\left[R_t + \gamma V_{\pi}\left(S_{t+1}\right) \mid S_t = s, A_t \sim \pi(s)\right]$

Here $a \sim \pi(s)$ means a is chosen by policy π in state s (note that π may be deterministic or stochastic)

► A similar equation holds for the optimal value:

$$V_*(s) = \max_{a} \mathbb{E}\left[R_t + \gamma V_*\left(S_{t+1}\right) \mid S_t = s, A_t = a\right]$$

What is RL: The Value Function (Cont.)

Look familiar? In a typical Economic problem:

$$\max_{\{k_t\}} \sum_{t=1}^n \gamma^t \mathbb{E}[u(c_t)] \quad \text{s.t.} f(k_t, c_t) = 0$$

What is RL: The Value Function (Cont.)

► Look familiar? In a typical Economic problem:

$$\max_{\{k_t\}} \sum_{t=1}^n \gamma^t \mathbb{E}[u(c_t)] \quad \text{s.t.} f(k_t, c_t) = 0$$

▶ We can rewrite it in a Value Function format:

$$V_*(k) = \max_{k'} \mathbb{E}[u(c) + \gamma V_*(k')]$$

What is RL: The Value Function (Cont.)

► Look familiar? In a typical Economic problem:

$$\max_{\{k_t\}} \sum_{t=1}^n \gamma^t \mathbb{E}[u(c_t)] \quad \text{s.t.} f(k_t, c_t) = 0$$

▶ We can rewrite it in a Value Function format:

$$V_*(k) = \max_{k'} \mathbb{E}[u(c) + \gamma V_*(k')]$$

We learnt Dynamic Programming (DP) to solve for the Value Function

RL, DP and Econ Problems

- ► So Far:
 - RL is closely related to DP
 - ▶ If we use DP to solve Econ problems, we can potentially use RL as well

RL, DP and Econ Problems

- ► So Far:
 - ► RL is closely related to DP
 - ► If we use DP to solve Econ problems, we can potentially use RL as well
- Two questions arise naturally:
 - difference between DP and RL?
 - Why not use RL in Econ?

from DP to RL

► Recall our Bellman Equation:

$$V_*(s) = \max_{a} \mathbb{E}\left[R_t + \gamma V_*\left(S_{t+1}\right) \mid S_t = s, A_t = a\right]$$

from DP to RL

Recall our Bellman Equation:

$$V_*(s) = \max_{a} \mathbb{E}\left[R_t + \gamma V_*\left(S_{t+1}\right) \mid S_t = s, A_t = a\right]$$

WLOG let's rewrite as

$$V_*(s) = \max_{a} R_t + \gamma \mathbb{E}[V_*(S_{t+1})] = \max_{a} R_t + \gamma \sum_{s'} P(s'|s, a) V_*(s')$$

from DP to RL

Recall our Bellman Equation:

$$V_*(s) = \max_{a} \mathbb{E}\left[R_t + \gamma V_*\left(S_{t+1}\right) \mid S_t = s, A_t = a\right]$$

WLOG let's rewrite as

$$V_*(s) = \max_{a} R_t + \gamma \mathbb{E}[V_*(S_{t+1})] = \max_{a} R_t + \gamma \sum_{s'} P(s'|s, a) V_*(s')$$

- In practice DP may suffer from:
 - P is not known or hard to write down
 - \triangleright S, A is continuous/high-dimensional
 - ▶ the max operator is computationally expensive

► Simulation is used to solve for unknown *P*

- Simulation is used to solve for unknown P
- rewrite the Bellman Equation for State Value Function

$$V_*(s) = \max_{a} R_t + \gamma \mathbb{E}[V_*(S_{t+1})] = \max_{a} R_t + \gamma \sum_{s'} P(s'|s, a) V_*(s')$$

to State-Action Value Function

$$Q_*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_*(s', a')$$

- Simulation is used to solve for unknown P
- rewrite the Bellman Equation for State Value Function

$$V_*(s) = \max_{a} R_t + \gamma \mathbb{E}[V_*(S_{t+1})] = \max_{a} R_t + \gamma \sum_{s'} P(s'|s, a) V_*(s')$$

to State-Action Value Function

$$Q_*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q_*(s',a')$$

the celebrated Q-learning algorithm:

$$Q^{i+1}(s,a) = (1-\alpha)Q^{i}(s,a) + \alpha(r+\gamma \max_{a'} Q^{i}(s',a'))$$

 \triangleright key: r, s' is simulated

► The Frozen-Lake Environment: "the ice is slippery, so you won't always move in the direction you intend."

```
SFFF (S: starting point, safe)
FHFH (F: frozen surface, safe)
FFFH (H: hole, fall to your doom)
HFFG (G: goal, where the frisbee is located)
```

Figure: Frozen-Lake

from DP to RL cont.

- ▶ In practice DP may suffer from:
 - ▶ *P* is not known or hard to write down
 - \triangleright S, A is continuous/high-dimensional
 - the max operator is computationally expensive
- ➤ To Solve for Problem 2 & 3, we use Neural Network and go to the modern Deep RL
 - ightharpoonup Critic: A Value Network $Q_{\theta}(s,a)$
 - Actor: A Policy Network $\pi_{\phi}(s)$

Three Components of a RL project

- An Interactive Environment
 - ► The problem you want to solved
 - generate an initial state, take an action as input and return the reward and next state as feedback

Three Components of a RL project

- An Interactive Environment
 - The problem you want to solved
 - generate an initial state, take an action as input and return the reward and next state as feedback
- An Agent
 - the "brain": e.g. the value function, the policy function
 - ▶ Some behavior patterns: the *exploration-exploitation trade-off*
 - ► Some other structures, e.g. the "memory for experiences"

Three Components of a RL project

- An Interactive Environment
 - ► The problem you want to solved
 - generate an initial state, take an action as input and return the reward and next state as feedback
- An Agent
 - the "brain": e.g. the value function, the policy function
 - ▶ Some behavior patterns: the *exploration-exploitation trade-off*
 - ► Some other structures, e.g. the "memory for experiences"
- A Training Algorithm
 - hyper-parameters to pin down, e.g. the learning rate scheme, training epochs

► RL researchers test on various benchmark Environments to verify the performance of their latest learning algorithms

- ► RL researchers test on various benchmark Environments to verify the performance of their latest learning algorithms
- ► GymAI: one of the Open-Source collections of Environments

- ► RL researchers test on various benchmark Environments to verify the performance of their latest learning algorithms
- GymAI: one of the Open-Source collections of Environments
- ▶ When we DIY our Environment (e.g. an Econ model) we follow the gymAl Environment structure

- ► RL researchers test on various benchmark Environments to verify the performance of their latest learning algorithms
- ► GymAI: one of the Open-Source collections of Environments
- When we DIY our Environment (e.g. an Econ model) we follow the gymAl Environment structure
- ► The "Hello World" Environment in DRL: The CartPole Problem
 - State: A 4-d tuple, continuous
 - Action: 0 or 1 denoting Left or Right
 - reward: +1 unless game finish
 - Link: CartPole

- ► RL researchers test on various benchmark Environments to verify the performance of their latest learning algorithms
- GymAI: one of the Open-Source collections of Environments
- When we DIY our Environment (e.g. an Econ model) we follow the gymAl Environment structure
- ► The "Hello World" Environment in DRL: The CartPole Problem
 - State: A 4-d tuple, continuous
 - Action: 0 or 1 denoting Left or Right
 - reward: +1 unless game finish
 - Link: CartPole
- Link: The Atari Games

Figure: Code Demo

Programming your RL project

- ▶ We are not RLers so to create new algorithms
- Yet implementing RL/DL is code-demanding
 - build your own Environments
 - monitor your performance
 - testing, debugging, tuning
 - run your code on High-Performance-Computing Cluster

Programming your RL project

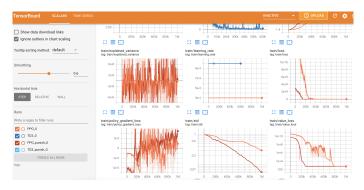


Figure: Tensorboard for monitoring

RL in Economics

- ▶ RL may be unnecessary if your problem can be solved by in an easier way
- ▶ BUT: economic models are more and more complex now
- ► A small field: Agent-Based Computational Economics
- ► Related topics: Bounded Rational Agents, Non-Equilibrium, ..., see the research by W. Brian Arthur in Santa Fe Institute

RL in Economics: Literature

- ▶ DRL in a Monetary Model (Chen, et al 2020)
- ► AI, algorithmic pricing and collusion (AER, 2020)
- ➤ Al as structural estimation: Deep Blue, Bonanza, and AlphaGo (2020)
- ▶ RL for Optimization of COVID-19 Mitigation policies (2020)
- ► High-Performance Computing Implementations of Agent-Based Economic Models for Realizing 1:1 Scale Simulations of Large Economies(IEEE, 2020)

► Link:Multi-Agent Hide and Seek

- Link:Multi-Agent Hide and Seek
- The learning of other agents would make the Environment non-stationary

- Link:Multi-Agent Hide and Seek
- The learning of other agents would make the Environment non-stationary
- Many game-theory settings have been studied previously for Multi-Agent learning, "Evolutionary Game Theory"
- it is non-trivial to build up learning algorithms even for those trivial matrix games

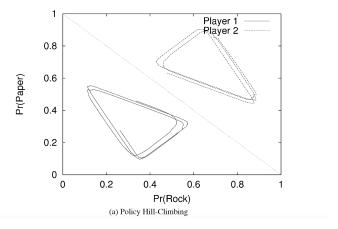


Figure: Non-Convergence in Rock-Paper-Scissor

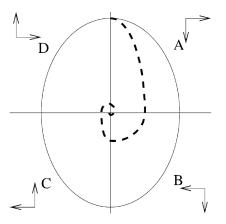


Figure: The "Win-or-Learn-Fast" Algorithm

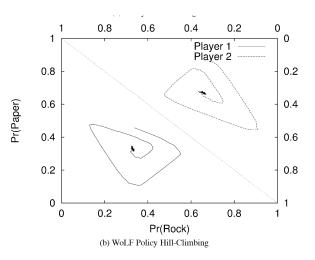


Figure: Convergence in Rock-Paper-Scissor with WoLF

Multi-Agent Reinforcement Learning

► Link:AI-Economist with tax policies

▶ RL is nothing far away from what we learn in economics

- ▶ RL is nothing far away from what we learn in economics
- RL could potentially help us to solve some complex settings where we should rely on simulations to solve agents' decision-makings

- ▶ RL is nothing far away from what we learn in economics
- RL could potentially help us to solve some complex settings where we should rely on simulations to solve agents' decision-makings
- ▶ MARL could even go further to study more interactive settings

- ▶ RL is nothing far away from what we learn in economics
- RL could potentially help us to solve some complex settings where we should rely on simulations to solve agents' decision-makings
- ► MARL could even go further to study more interactive settings
- policy-makers' problem in macro, strategic plays in game theory, firms' interaction in IO...

- ▶ RL is nothing far away from what we learn in economics
- RL could potentially help us to solve some complex settings where we should rely on simulations to solve agents' decision-makings
- MARL could even go further to study more interactive settings
- policy-makers' problem in macro, strategic plays in game theory, firms' interaction in IO...
- ▶ We believe this is a promising research direction!