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Overview

▶ What is Reinforcement Learning?

▶ A Brief Definition

▶ From the perspective of CS: ML v.s. RL

▶ From the perspective of Econ/OR: DP v.s. RL

▶ Practical Implementation

▶ Reinforcement Learning in Economics:

▶ The Latest Literature

▶ Sub-Field: Multi-Agent Reinforcement Learning

▶ Goal:

▶ Realize that the ”AI” is nothing mysterious (Is RL ≈ AI?)

▶ arise interest to implement RL in your research
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What is Reinforcement Learning?

▶ The first thought: Library Cafe v.s. Rootes

▶ The exploration-exploitation trade-off

▶ Reinforcement Learning is about an Agent learns via
interacting with an Environment

▶ State of the Environment

▶ Action taken by the Agent

▶ Reward from the Action

▶ The ”Literal Decomposition”:

▶ Learning: Optimal Policy

▶ Reinforcement: Reward-Driven
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What is RL: A Brief Definition

▶ Definition: A Markov decision process (MDP) is a 4-tuple
(S ,A,Pa,Ra), where:

▶ S is a set of states called the state space

▶ A is a set of actions called the action space

▶ Pa (s, s
′) = Pr (st+1 = s ′ | st = s, at = a) is the prob. that

action a in state s at time t will lead to state s ′ at time t + 1

▶ Ra (s, s
′) is the immediate reward received after transitioning

from state s to state s ′, due to action a

▶ RL solves problems of MDPs:

▶ agent observes state st ∈ S, takes an action at ∈ A based on a
policy π ∈ S → A, the environment produces a reward rt and
moves to st+1

▶ the goal is to find an optimal policy that obtaining
accumulative rewards

∑n
i=1 γ

tRt
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What is Reinforcement Learning?

Figure: Agent-Envrionement Interaction by Sutton and Barto(2008)
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What is RL: an Illustration

▶ State: current position

▶ Action: Up, Low, Left, Right

▶ Reward: ?

Figure: An Maze Problem
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What is Reinforcement Learning?

Decision Making is a BIG inter-disciplinary topics!

Figure: Related Disciplines by David Silver
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Machine Learning: Supervised Learning

▶ Data: {xi , yi}i=1...N

▶ Task: find f : X → Y such that f (x) ≈ y

▶ the training is to minimize the loss w.r.t a criteria, e.g. the
mean-square-error (MSE):

∑
i (f (xi )− yi )

2

▶ Two categories: regression and classification

▶ ”Supervised”: You know what is true
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Machine Learning: Supervised Learning

Figure: Supervised Learning
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Supervised Learning: An illustration

The ”Hello World” problem in supervised learning

Figure: MNIST data
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Machine Learning: Unsupervised Learning

▶ Data: {xi}i=1...N

▶ Task: find some sort of underlying structure, correctly
label/group the data based on the characteristics xi

▶ ”Unsupervised”: You DON’T know what is true
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Machine Learning: Reinforcement Learning

▶ Reinforcement Learning belongs to ”Semi-Supervised
Learning”

▶ We don’t directly observe what is optimal, but rather some
signals

▶ Also, what turns out to be ”optimal” is sequentially-dependent

▶ The case of GO
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What is RL: The Value Function

▶ First assume S and A are discrete and finite for simplicity

▶ define the accumulative reward Gt =
∑n

t=1 γ
tRt

▶ Formally, the Bellman Equation:

Vπ(s) = E [Rt + γGt+1 | St = s,At ∼ π(s)]

= E [Rt + γVπ (St+1) | St = s,At ∼ π(s)]

Here a ∼ π(s) means a is chosen by policy π in state s (note
that π may be deterministic or stochastic)

▶ A similar equation holds for the optimal value:

V∗(s) = max
a

E [Rt + γV∗ (St+1) | St = s,At = a]
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What is RL: The Value Function (Cont.)

▶ Look familiar? In a typical Economic problem:

max
{kt}

n∑
t=1

γtE[u(ct)] s.t.f (kt , ct) = 0

▶ We can rewrite it in a Value Function format:

V∗(k) = max
k ′

E[u(c) + γV∗(k
′)]

▶ We learnt Dynamic Programming (DP) to solve for the Value
Function
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RL, DP and Econ Problems

▶ So Far:

▶ RL is closely related to DP

▶ If we use DP to solve Econ problems, we can potentially use
RL as well

▶ Two questions arise naturally:

▶ difference between DP and RL?

▶ Why not use RL in Econ?
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from DP to RL

▶ Recall our Bellman Equation:

V∗(s) = max
a

E [Rt + γV∗ (St+1) | St = s,At = a]

▶ WLOG let’s rewrite as

V∗(s) = max
a

Rt+γE[V∗(St+1)] = max
a

Rt+γ
∑
s′

P(s ′|s, a)V∗(s
′)

▶ In practice DP may suffer from:

▶ P is not known or hard to write down

▶ S,A is continuous/high-dimensional

▶ the max operator is computationally expensive
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from DP to RL cont.
▶ Simulation is used to solve for unknown P

▶ rewrite the Bellman Equation for State Value Function

V∗(s) = max
a

Rt+γE[V∗(St+1)] = max
a

Rt+γ
∑
s′

P(s ′|s, a)V∗(s
′)

▶ to State-Action Value Function

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s ′|s, a)max
a′

Q∗(s
′, a′)

▶ the celebrated Q-learning algorithm:

Q i+1(s, a) = (1− α)Q i (s, a) + α(r + γmax
a′

Q i (s ′, a′))

▶ key: r , s ′ is simulated
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from DP to RL cont.

▶ The Frozen-Lake Environment:
”the ice is slippery, so you won’t always move in the direction
you intend.”

Figure: Frozen-Lake
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from DP to RL cont.

▶ In practice DP may suffer from:

▶ P is not known or hard to write down

▶ S,A is continuous/high-dimensional

▶ the max operator is computationally expensive

▶ To Solve for Problem 2 & 3, we use Neural Network and go to
the modern Deep RL

▶ Critic: A Value Network Qθ(s, a)

▶ Actor: A Policy Network πϕ(s)
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Three Components of a RL project

▶ An Interactive Environment

▶ The problem you want to solved

▶ generate an initial state, take an action as input and return the
reward and next state as feedback

▶ An Agent

▶ the ”brain”: e.g. the value function, the policy function

▶ Some behavior patterns: the exploration-exploitation trade-off

▶ Some other structures, e.g. the ”memory for experiences”

▶ A Training Algorithm

▶ hyper-parameters to pin down, e.g. the learning rate scheme,
training epochs

20 / 32



Three Components of a RL project

▶ An Interactive Environment

▶ The problem you want to solved

▶ generate an initial state, take an action as input and return the
reward and next state as feedback

▶ An Agent

▶ the ”brain”: e.g. the value function, the policy function

▶ Some behavior patterns: the exploration-exploitation trade-off

▶ Some other structures, e.g. the ”memory for experiences”

▶ A Training Algorithm

▶ hyper-parameters to pin down, e.g. the learning rate scheme,
training epochs

20 / 32



Three Components of a RL project

▶ An Interactive Environment

▶ The problem you want to solved

▶ generate an initial state, take an action as input and return the
reward and next state as feedback

▶ An Agent

▶ the ”brain”: e.g. the value function, the policy function

▶ Some behavior patterns: the exploration-exploitation trade-off

▶ Some other structures, e.g. the ”memory for experiences”

▶ A Training Algorithm

▶ hyper-parameters to pin down, e.g. the learning rate scheme,
training epochs

20 / 32



GymAI Environments

▶ RL researchers test on various benchmark Environments to
verify the performance of their latest learning algorithms

▶ GymAI: one of the Open-Source collections of Environments

▶ When we DIY our Environment (e.g. an Econ model) we
follow the gymAI Environment structure

▶ The ”Hello World” Environment in DRL: The CartPole
Problem

▶ State: A 4-d tuple, continuous

▶ Action: 0 or 1 denoting Left or Right

▶ reward: +1 unless game finish

▶ Link: CartPole

▶ Link: The Atari Games
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GymAI Environments

Figure: Code Demo
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Programming your RL project

▶ We are not RLers so to create new algorithms

▶ Yet implementing RL/DL is code-demanding

▶ build your own Environments

▶ monitor your performance

▶ testing, debugging, tuning

▶ run your code on High-Performance-Computing Cluster
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Programming your RL project

Figure: Tensorboard for monitoring
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RL in Economics

▶ RL may be unnecessary if your problem can be solved by in an
easier way

▶ BUT: economic models are more and more complex now

▶ A small field: Agent-Based Computational Economics

▶ Related topics: Bounded Rational Agents, Non-Equilibrium,
..., see the research by W. Brian Arthur in Santa Fe Institute
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RL in Economics: Literature

▶ DRL in a Monetary Model (Chen, et al 2020)

▶ AI, algorithmic pricing and collusion (AER, 2020)

▶ AI as structural estimation: Deep Blue, Bonanza, and
AlphaGo (2020)

▶ RL for Optimization of COVID-19 Mitigation policies (2020)

▶ High-Performance Computing Implementations of
Agent-Based Economic Models for Realizing 1:1 Scale
Simulations of Large Economies(IEEE, 2020)
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Multi-Agent Learning and Game Theory

▶ Link:Multi-Agent Hide and Seek

▶ The learning of other agents would make the Environment
non-stationary

▶ Many game-theory settings have been studied previously for
Multi-Agent learning, ”Evolutionary Game Theory”

▶ it is non-trivial to build up learning algorithms even for those
trivial matrix games

27 / 32
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Multi-Agent Learning and Game Theory

Figure: Non-Convergence in Rock-Paper-Scissor
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Multi-Agent Learning and Game Theory

Figure: The ”Win-or-Learn-Fast” Algorithm
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Multi-Agent Learning and Game Theory

Figure: Convergence in Rock-Paper-Scissor with WoLF
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Multi-Agent Reinforcement Learning

▶ Link:AI-Economist with tax policies
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Conclusion

▶ RL is nothing far away from what we learn in economics

▶ RL could potentially help us to solve some complex settings
where we should rely on simulations to solve agents’
decision-makings

▶ MARL could even go further to study more interactive settings

▶ policy-makers’ problem in macro, strategic plays in game
theory, firms’ interaction in IO...

▶ We believe this is a promising research direction!
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